numpy.ma.array#
- ma.array(data, dtype=None, copy=False, order=None, mask=False, fill_value=None, keep_mask=True, hard_mask=False, shrink=True, subok=True, ndmin=0)[source]#
An array class with possibly masked values.
Masked values of True exclude the corresponding element from any computation.
Construction:
x = MaskedArray(data, mask=nomask, dtype=None, copy=False, subok=True, ndmin=0, fill_value=None, keep_mask=True, hard_mask=None, shrink=True, order=None)
- Parameters
- dataarray_like
Input data.
- masksequence, optional
Mask. Must be convertible to an array of booleans with the same shape as data. True indicates a masked (i.e. invalid) data.
- dtypedtype, optional
Data type of the output. If
dtype
is None, the type of the data argument (data.dtype
) is used. Ifdtype
is not None and different fromdata.dtype
, a copy is performed.- copybool, optional
Whether to copy the input data (True), or to use a reference instead. Default is False.
- subokbool, optional
Whether to return a subclass of
MaskedArray
if possible (True) or a plainMaskedArray
. Default is True.- ndminint, optional
Minimum number of dimensions. Default is 0.
- fill_valuescalar, optional
Value used to fill in the masked values when necessary. If None, a default based on the data-type is used.
- keep_maskbool, optional
Whether to combine mask with the mask of the input data, if any (True), or to use only mask for the output (False). Default is True.
- hard_maskbool, optional
Whether to use a hard mask or not. With a hard mask, masked values cannot be unmasked. Default is False.
- shrinkbool, optional
Whether to force compression of an empty mask. Default is True.
- order{‘C’, ‘F’, ‘A’}, optional
Specify the order of the array. If order is ‘C’, then the array will be in C-contiguous order (last-index varies the fastest). If order is ‘F’, then the returned array will be in Fortran-contiguous order (first-index varies the fastest). If order is ‘A’ (default), then the returned array may be in any order (either C-, Fortran-contiguous, or even discontiguous), unless a copy is required, in which case it will be C-contiguous.
Examples
The
mask
can be initialized with an array of boolean values with the same shape asdata
.>>> data = np.arange(6).reshape((2, 3)) >>> np.ma.MaskedArray(data, mask=[[False, True, False], ... [False, False, True]]) masked_array( data=[[0, --, 2], [3, 4, --]], mask=[[False, True, False], [False, False, True]], fill_value=999999)
Alternatively, the
mask
can be initialized to homogeneous boolean array with the same shape asdata
by passing in a scalar boolean value:>>> np.ma.MaskedArray(data, mask=False) masked_array( data=[[0, 1, 2], [3, 4, 5]], mask=[[False, False, False], [False, False, False]], fill_value=999999)
>>> np.ma.MaskedArray(data, mask=True) masked_array( data=[[--, --, --], [--, --, --]], mask=[[ True, True, True], [ True, True, True]], fill_value=999999, dtype=int64)
Note
The recommended practice for initializing
mask
with a scalar boolean value is to useTrue
/False
rather thannp.True_
/np.False_
. The reason isnomask
is represented internally asnp.False_
.>>> np.False_ is np.ma.nomask True